1.算法说明:
如3141592,在m(digitDivide)=100时,即要求计算百位上“1”的个数
其中a为31415,b为92,31415中出现了3142次“1”,因为每10个数里面出现1次“1”。而实际上,31415是3141500,所以把31415中1的个数再乘以m。如3141400~3141499中,前缀为31414的数出现了100次,所以需要乘以m(此时是100)。
2.注意溢出的问题,所以在for循环里面,使用了long long类型。
Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.
For example:
Given n = 13,
Return 6, because digit 1 occurred in the following numbers: 1, 10, 11, 12, 13.
Hint:
- Beware of overflow.
Subscribe to see which companies asked this question
[c language=”++”]
class Solution {
public:
int countDigitOne(int n) {
int ans=0;
for(long long digitDivide=1;digitDivide<=n;digitDivide*=10)
{
int a=n/digitDivide;
int b=n%digitDivide;
ans+=(a+8)/10*digitDivide+(a%10==1)*(b+1);
}
return ans;
}};
[/c]